Disambiguating the Equals Sign


Depending on context, \(x = y\) can mean any of:

  • \(x\) is known to be equal to \(y\)
  • \(x\) is assigned to be equal to y
  • \(x\) is defined to be equal to \(y\).
  • We’re trying to show \(x\) is equal to \(y\)
  • The Boolean relation of \(x = y\)

I get around this by using distinct forms of the equals sign for each of the nuances above.

I only use the equals sign when I know \(x\) is equal to \(y\).

If I’m using \(x = y\) to mean “let \(x\) be equal to \(y\)”, I use either \(x \gets y\) or \(x := y\).

If I’m defining \(x\) to be equal to \(y\), I use \(x \equiv y\) or more often \(x \stackrel{def}{=} y\) because my triple equals sign looks terrible when handwritten. The spacing is always off.

When I’m trying to show 2 sides are equal, I use \(\stackrel{?}{=}\). This has the advantage of making it clear that it’s wrong to transform both sides because I don’t know that they’re equal.The question mark conveys the idea of “dunno if they’re equal”.

For the last one, I use == like in programming. I’m used to it.

These distinctions may be overkill, but I think they make intent clearer, which is all the more valuable when you’re in a thicket of symbols without a map.

Related Posts

Compactness of the Classical Groups

Derivative AT a Discontinuity

Just because 2 things are dual, doesn't mean they're just opposites

Boolean Algebra, Arithmetic POV

discontinuous linear functions

Continuous vs Bounded

Minimal Surfaces

November 2, 2023

NTK reparametrization

Kate from Vancouver, please email me