Another Way to Write Conditional Probability

The \(p(\cdot | B)\) notation is convenient sometimes, but other times it obscures what’s going on, like in the definition of conditional independence and the law of total probability (when you fix the conditioning event).

We can rewrite \(p(A|B)\) as \(p_B(A)\) to make clear that we are deriving a new probability measure (\(p_B\)) induced from the old one (\(p\)) using the knowledge that \(B\) occurred. Or we could shorten it even further, from \(p_B\) to \(p'\).

Conditional Independence

Conditional independence reduces to regular independence under the measure \(p'\). \(p(A, C | B) = p(A | B) p(C | B)\) becomes \(p'(A,C) = p'(A) p'(B)\).

Total probability

\(\sum\limits_A p(A|B) = 1\), which is easier to see if we write it as \(\sum\limits_A p'(A)\).

Related Posts

Random Thought: LC Theorem

I finally have an answer to "who's your favorite singer?"

My Top Tip for Helping People Get Started Programming


Random paper on angles

An Image is Worth 16x16 Words

Random stuff

Lossless Data Compression with Neural Networks by Fabrice Bellard

Downscaling Numerical Weather Models With GANs (My CI 2019 Paper)

Learning Differential Forms and Questions