An Image is Worth 16x16 Words


Transformer gives you function \(F: [X] \to [Y]\). Anything that can be totally ordered can be learned. So it’s pretty general.

To me, this paper is more evidence for the transformer as a universal architecture. Some other (famous) examples:

  • AlphaFold
  • GPT
  • BERT

The Idea

Take an image (and its target image in training), cut it into patches, embed each patch, then use transformer on that. It’s that simple.

I wonder if different sequentialization strategies would work better or worse (rasterize up/down instead of left/right)? Would doing it randomly give noticeably different performance?

Bitter Lesson

We find that large scale training trumps inductive bias.

I gotta get more compute.

Related Posts

Minimal Surfaces

November 2, 2023

NTK reparametrization

Kate from Vancouver, please email me

ChatGPT Session: Emotions, Etymology, Hyperfiniteness

Some ChatGPT Sessions

2016 ML thoughts

My biggest takeaway from Redwood Research REMIX

finite, actual infinity, potential infinity

Actions and Flows