From Semigroup To Group, Through Power Notation


If we consider the exponential notation used in abstract algebra, we get a nice mnemonic for semigroups, monoids, and groups:

  • Semigroup: Only positive powers are defined
  • Monoid: The identity element makes $$a^0 = e$$ defined, so non-negative powers are defined
  • Group: inverses define negative powers, so all integer powers are defined

By remembering the completion of the natural numbers into the integers, we can remember what exactly defines semigroups, monoids, and groups (I know I mix them up all the time).

Related Posts

Some ChatGPT Sessions

2016 ML thoughts

My biggest takeaway from Redwood Research REMIX

finite, actual infinity, potential infinity

Actions and Flows

PSA: reward is part of the habit loop too

a kernel of lie theory

The hyperfinite timeline

Slick hyperfinite Ramsey theory proof

Gaoxing Guy