Using Exponents to Teach 3 Basic Algebraic Structures


You can think of semigroups, monoids, and groups as the minimal structures needed to define and extend exponents.

All 3 structures are:

  • a set
  • an associative binary operation on that set

Monoids and groups add an identity element.

Groups add inverses.

Now let’s see how exponents are a useful way to remember this.

Associativity

This property is necessary for exponents to even make sense.

If , then is ambiguous. A good example is the binary operation of exponentiation with .

Semigroups

Semigroups are sufficient to define strictly positive exponents, since is always well-defined.

Monoids

Monoids let you define , where 1 is the identity element. So now you’ve added 0.

Groups

If you define , then you get negative powers from the inverses.

Takeaway

You can use the extension of the natural numbers to the integers by adding 0 and negative numbers to remember how semigroups, monoids, and groups are related.

Related Posts

Handy command line benchmarking tool

Stan Rogers

Ultimate Hot Couch Guy

Quote on Java Generics

The Programmer Tendency

Figure out undocumented JSON with gron

Mental Model of Dental Hygiene

Book Review: Swastika Night

Is there a name for this construction?

Fun with negation and idioms