Using Exponents to Teach 3 Basic Algebraic Structures

You can think of semigroups, monoids, and groups as the minimal structures needed to define and extend exponents.

All 3 structures are:

  • a set
  • an associative binary operation on that set

Monoids and groups add an identity element.

Groups add inverses.

Now let’s see how exponents are a useful way to remember this.


This property is necessary for exponents to even make sense.

If \((xx)x \neq x(xx)\), then \(x^3\) is ambiguous. A good example is the binary operation of exponentiation with \(x = 3\). \((3^3)^3 = 19,683 \neq 7,625,597,484,987 = 3^(3^3)\)


Semigroups are sufficient to define strictly positive exponents, since \(x \cdot x\) is always well-defined.


Monoids let you define \(x^0 = 1\), where 1 is the identity element. So now you’ve added 0.


If you define \(x^{-1} := inv(x)\), then you get negative powers from the inverses.


You can use the extension of the natural numbers to the integers by adding 0 and negative numbers to remember how semigroups, monoids, and groups are related.

Related Posts


Random Thought: LC Theorem

I finally have an answer to "who's your favorite singer?"

My Top Tip for Helping People Get Started Programming


Random paper on angles

An Image is Worth 16x16 Words

Random stuff

Lossless Data Compression with Neural Networks by Fabrice Bellard

Downscaling Numerical Weather Models With GANs (My CI 2019 Paper)