Introduction to Smooth Manifolds 1: Smooth Functions on Euclidean Space


Working on Introduction to Smooth Manifolds by Loring Tu (AKA \(L^2\)) with Charles.

1.1: Smooth vs. Analytic functions

I don’t yet see why this distinction is the first thing the book talks about.

Smooth functions are infinitely differentiable. Analytic functions are even stronger since they equal their Taylor series.

I already hate the convention of writing a point \(p\) in coordinates with superscripts \((p^1 \dots p^n)\). I prefer subscripts and slice notation: \(p := p_{1:n}\).

Bump functions are cool, since you can create a smooth function that’s totally flat outside an arbitrarily small region.

Charles pointed out that non-analytic smooth functions are physically because they change their values in a finite amount of time but can have 0 derivative of every order.

1.2: Taylor’s Theorem with Remainder

Smooth functions can be approximated well by a Taylor series.

This section basically derives the Taylor formula.

Here’s the ending note:

NOTATION. It is customary to write the standard coordinates on \(\mathbb{R}^2\) as \(x, y\), and the standard coordinates on \(\mathbb{R}^3\) as \(x, y, z\).

In case you didn’t know that. And yet are reading a book about smooth manifolds.

Related Posts

Random Thought: LC Theorem

I finally have an answer to "who's your favorite singer?"

My Top Tip for Helping People Get Started Programming

GPT-f

Random paper on angles

An Image is Worth 16x16 Words

Random stuff

Lossless Data Compression with Neural Networks by Fabrice Bellard

Downscaling Numerical Weather Models With GANs (My CI 2019 Paper)

Learning Differential Forms and Questions