discontinuous linear functions


Let \(H > \mathbb{Nat}\) be unlimited.

Then the linear map \(T(x: \mathbb{R}^*): \mathbb{R}^* := Hx\) is discontinuous. Why, its discontinuity is equivalent to it being unbounded. This holds in general, but this example is the germ of generality.

See my previous post for definitions of bounded and continuous.

The map \(T\) is unbounded since it maps \(1\) and \(2\) to \(H\) and \(2H\), which are \(H\) apart, an unlimited distance. It is also not continuous since \(\frac{1}{H}\) is infinitely close to \(\frac{2}{H}\), but \(T(\frac{1}{H}) = 1\) is not infinitely close to \(T(\frac{2}{H}) = 2\).

However, if \(H\) was limited, then \(T\) would be continuous. The scaling of \(H\) would be bounded, and infinitely close points would stay infinitely close, AKA \(T\) is continuous.

For experts and the pathologically curious

Existence of discontinuous linear maps on complete spaces is equivalent to forms of the Axiom of Choice. The wiki covers it more. From our radically elementary perspective, the issue is that H is an external object. One way of defining it as a sequence under the hood is H = [1, 2, 3, ..]. Its unassignablility (as Leibniz called it) is where the issue lies.

Related Posts

Compactness of the Classical Groups

Derivative AT a Discontinuity

Just because 2 things are dual, doesn't mean they're just opposites

Boolean Algebra, Arithmetic POV

Continuous vs Bounded

Minimal Surfaces

November 2, 2023

NTK reparametrization

Kate from Vancouver, please email me

ChatGPT Session: Emotions, Etymology, Hyperfiniteness